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1. INTRODUCTION

The effects of condensation of water vapour
and consequent release of latent heat within baro-
clinic waves was represented by Emanuel et al., 1987
(hereafter referred to as EFT) with reduced poten-
tial vorticity in the updraft region of such waves, in
the assumption that a slantwise convective adjust-
ment occurred. The study of two- dimensional mod-
els incorporating this assumption revealed a faster
growth rate and a contraction of the width of the
updraft region. Those features were also obtained
in other 2-D models with explicit representation
of convection and various approximations for the
meridional advection of thermodynamic quantities
(e.g. Fantini, 1993). All the results concerning lin-
ear non-adiabatic baroclinic instability need to be
confirmed in more realistic three-dimensional geom-
etry. In particular, by showing that the most un-
stable normal modes are two-dimensional one could
give confidence to the results of two-dimensional
models. In this work we use a three dimensional
quasi geostrophic model, designed specifically for
this purpose, to find the normal modes of the Eady
problem when condensation effects are represented
as in EFT. The choice of that parameterization for
the release of latent heat is motivated in the first
place by the desire to extend to three dimensions the
known results. It has also the advantage of not in-
troducing any meridional scale of its own, as would
be the case for any other representation taking into
account the variation of saturation vapour pressure
with latitude related to environmental baroclinicity.

The present model is quasi geostrophic rather
than semi geostrophic as the models used in
EFT were. It was argued in Fantini, 1990
that the appearance of Ertel’s potential vorticity
as a coefficient in the pseudo potential vorticity
equation is an artifact of the semi geostrophic
approximation, and both the primitive equations
and the quasi geostrophic equations are sensitive
to ‘vertical’ static stability. We hope we will be
able to clarify this one, as well as other problems
related to the representation of the meridional and
vertical variation of environmental parameters, by
performing experiments with a hierarchy of models,
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of which the quasi geostrophic is but the first step,
and which will include a ‘geostrophic momentum’
extension of the present one, and a full primitive
equation non hydrostatic cloud model adapted to
the study of moist baroclinic waves. The present
work will only be concerned with the presentation
of baroclinic instability in an environment of small
stability to moist slantwise convection in the quasi
geostrophic framework. A linearized perturbation
approach about an Eady base state is assumed, but
some preliminary results in the non linear regime
will also be included.

2. QUASI GEOSTROPHIC MODEL

The parameterization of latent heating ef-
fects introduced by EFT, translated in the quasi
geostrophic framework, consists of using a ‘dry’
static stability Nd for all descending motion, and a
much smaller ‘moist’ static stability Nm for ascend-
ing motions. The value of Nm is determined by the
assumption that a slantwise convective adjustment
has occurred and reduced the thermodynamic pro-
file to a state of neutrality to moist slantwise con-
vection. This condition is expressed quantitatively
by qe = 0, where qe is the equivalent potential vor-
ticity. The observational basis for this assumption
were presented by Emanuel, 1988. The numerical
formulation of this parameterization requires the
knowledge of vertical velocity w at each grid point
and at each time step. For this purpose the quasi
geostrophic pseudo potential vorticity equation is
not integrated in the usual form containing just the
geopotential/ streamfunction φ, but is instead ex-
pressed, in non dimensional form, as

(∂t + φx∂y − φy∂x)∇2

Hφ = wz (1)
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The thermodynamic equation is

(∂t + φx∂y − φy∂x) φz + n2w = 0 (2)

where

n =
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From (1) and (2) we obtain the diagnostic equation
for w (‘ω equation’)

∇
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H(n2w) + wzz = 2 (φxz∂y − φyz∂x)∇2

Hφ (3)

Equation (1) is integrated forward in time with a
leapfrog scheme, and (3) is solved by relaxation
at each time step in order to obtain w, and
consequently the n2 necessary for the next time
step. The relaxation technique has to be used
because of the coupling of n2 and w in the horizontal
laplacian term, which requires an initial guess and
successive adjustments toward the correct solution.
On the other hand, the inversion of ∇2

Hφ to obtain
the geopotential is performed by double Fourier
transform, since the domain chosen is doubly
periodic.

The scaling quantities are:
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φ : foUL

w :
UH

L

U
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where as usual H is the height of the model, U
the zonal wind increase between top and bottom
boundaries and fo the uniform Coriolis parameter.
Extension of this model to β-plane(t) dynamics is
under way.

The condition qe = 0, representative of the
state of neutrality to moist slantwise convection,
gives the non dimensional value n2 = r = .05 in the
updraft, while r = 1 recovers the dry Eady model.

Perturbing the geopotential around an Eady
base state

φ = −(uo + z)y + φ
′

gives the equations as they are actually integrated
in the model:
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where we have introduced a flag λ to mark the non-
linear terms and added a laplacian diffusion, with
coefficient ν = .01, in the prognostic equation to
control numerical noise in the non-linear integra-
tions. Finally the vertical discretization is of the
Lorenz type, with φ known at levels intermediate
between w levels. The vertical velocity w is set
equal to zero at top and bottom boundaries. All
experiments presented here have been run with 11

vertical levels and 32 grid points in either x and y
directions.

Fig.1 – Geopotential (top) and vertical velocity
(bottom) for dry Eady wave of non dimensional
zonal length 3.6, infinite in y

Fig.2 – Same as Fig.1 except moist wave, r=.05



3. LINEAR RESULTS

We begin by showing in Fig.1 the x − z cross
section of geopotential φ and vertical velocity w
for a dry Eady wave (r = 1) of non dimensional
length X = 3.6 in the zonal direction and infinite
meridional wavelength. This is near the most
unstable dry Eady wave. Fig.2 shows the same
fields for this wave in an environment having r = .05
and displays the features already known from the
previously mentioned works. We also show in Fig.3
the growth rate σ versus wavelength X for dry and
moist Eady waves of infinite meridional extent as
obtained in the present model.

Fig.3 – Growth rate vs zonal wavelength for
dry (r=1) and moist (r=.05) Eady waves of infinite
meridional wavelength, as obtained in the present
model

The results shown up to now were obtained
by initializing the time run with a dry Eady
normal mode of infinite meridional wavelength.
If we use an initial condition with a nonzero
meridional wavenumber, the growth rate remains
smaller than that of the two-dimensional wave and
no contraction of the meridional scale is observed.
Fig.s 4 and 5 present the geopotential and vertical
velocity, respectively, at the first internal level of
the model (non dimensional height .045), for one
such case with zonal wavelength X = 2.4, which
is the fastest growing wavelength in the moist
environment, and meridional wavelength Y = 5.0.

Fig.4 – Geopotential φ at the lowest internal
level for linear normal mode of zonal length X = 2.4
and meridional length Y = 5.0 non dimensional
units in the r = .05 environment

Fig.5 – Same as Fig.4 but for vertical velocity w

As a further check on the ‘normal mode’ nature
of those solutions, and their ranking in terms



of growth rate we have performed a series of
experiments started from random initial conditions
and show in Fig.6 the time evolution of the w
field at the first internal level for one of those
runs, which shows very clearly how a nonzero
meridional wavenumber is firstly apparent, because
of accidental meridional structure of the initial
condition, but slowly the purely two-dimensional
wave takes over, thanks to the marginally higher
growth rate.

Fig.6 – Time evolution of the vertical velocity
field at the lowest internal level for a run which
started from random initial condition. X =
2.4, Y = 5.0. Maximum amplitude is normalized
to 1. Isoline spacing for negative (dashed) values is
1/3 of the spacing for positive values.

4. NON LINEAR EVOLUTION

The result shown so far constitute fair evidence
that the most unstable normal modes of moist baro-
clinic instability are two-dimensional, having pa-
rameterized the release of latent heat as in EFT.

We know that a more realistic representation of sat-
uration vapour pressure would introduce a ‘physi-
cal’ meridional scale, just like the consideration of
a zonal jet would influence the meridional scale of
baroclinic waves, and we plan to tackle those prob-
lems with more appropriate models in the future.
The main question we wanted to answer here was
whether the scale contraction induced by conden-
sation of vater vapour in the zonal direction would
appear in the meridional direction as well. This
does not seem to be the case as far as the linear
modes are concerned. On the other hand it is well
known that convection in its pure form is spatially
isotropic and the only term in the linear baroclinic
equations which can break this symmetry is the ad-
vection by the zonal wind. It is then natural to ex-
pect that in the non linear phase of evolution, when
the meridional self-advection term becomes o(1), a
meridional scale contraction may occur.

Fig.7 – Time evolution of w in a non-linear
experiment for X = 2.4, Y = 5.0 as in Fig.5. The
initial condition is a dry Eady wave.



Fig.7 shows the time evolution of vertical
velocity for the same wave of Fig.5 when the non-
linear terms are active (λ = 1 in Eq.s (4) and
(5)). The expected scale contraction takes place
disuniformly in space. The updraft appears split
in a sequence of patches which are alternately
elongated in the meridional and in the zonal
direction and are aligned with the eastern and
northern boundaries of the low pressure areas (not
shown). A detailed study of this evolution and
its meteorological implications will be presented
elsewhere.
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