Jian Rao, Xiaoqi Zhang, Qian Lu, Siming Liu, Prediction of near-surface conditions following the 2023/24 sudden stratospheric warming by the S2S project models, Atmospheric Research, 2024,107882, ISSN 0169-8095, https://doi.org/10.1016/j.atmosres.2024.107882
Zhu, T., Yang, J., Bao, Q., & Vitart, F. (2024). Boreal summer extratropical intraseasonal oscillation prediction in current subseasonal-to-seasonal operational models over Eurasia. Journal of Geophysical Research: Atmospheres, 129, e2024JD042015. https://doi.org/10.1029/2024JD042015
Xiaolei Liu et al. A statistic of the subseasonal forecast skill windows of 2-meter air temperature, Environ. Res. Commun. 6 085002 https://doi.org/10.1088/2515-7620/ad6667
Yang, J., Zhu, T., Vitart, F. et al. Synchronous Eurasian heat extremes tied to boreal summer combined extratropical intraseasonal waves. npj Clim Atmos Sci 7, 169 (2024). https://doi.org/10.1038/s41612-024-00714-1
Ryu, J., Wang, SY., Jeong, JH. et al. Sub-seasonal prediction skill: is the mean state a good model evaluation metric?. Clim Dyn (2024). https://doi.org/10.1007/s00382-024-07315-x
Xiao, H., Xu, P., & Wang, L. (2024). The Unprecedented 2023 North China heatwaves and their S2S predictability. Geophysical Research Letters, 51, e2023GL107642. https://doi.org/10.1029/2023GL107642
Iqura Malik, Vimal Mishra, Sub-seasonal to seasonal (S2S) prediction of dry and wet extremes for climate adaptation in India, Climate Services, Volume 34, 2024, 100457, ISSN 2405-8807, https://doi.org/10.1016/j.cliser.2024.100457.
Wie, J., Kang, J. & Moon, BK. Role of Madden-Julian Oscillation in predicting the 2020 East Asian summer precipitation in subseasonal-to-seasonal models. Sci Rep 14, 865 (2024). https://doi.org/10.1038/s41598-024-51506-9
Liang, X.; Vitart, F.; Wu, T. Evaluation of Probabilistic Forecasts of Extreme Cold Events in S2S Models. Water, 2023, 15, 2795. https://doi.org/10.3390/w15152795
Lu, M. M., Tsai, W. Y. H., Huang, S. F., Cho, Y. M., Sui, C. H., Solis, A. L., & Chen, M. S. (2023).The Philippine springtime (February-April) sub-seasonal rainfall extremes and extended-range forecast skill assessment using the S2S database. Weather and Climate Extremes, 100582.https://doi.org/10.1016/j.wace.2023.100582
Yang, J., Zhu, T. & Vitart, F. An extratropical window of opportunity for subseasonal prediction of East Asian summer surface air temperature. npj Clim Atmos Sci 6, 46 (2023). https://doi.org/10.1038/s41612-023-00384-5
Inatsu, M., M. Matsueda, N. Nakano, and S. Kawazoe, 2023: Prediction skill and practical predictability depending on the initial atmospheric states in S2S forecasts. J. Atmos. Sci., https://doi.org/10.1175/JAS-D-22-0262.1, 2023
Yan, Y., Zhu, C., & Liu, B. (2023). Subseasonal predictability of the July 2021 extreme rainfall event over Henan China in S2S operational models. Journal of Geophysical Research: Atmospheres, 128, e2022JD037879. https://doi.org/10.1029/2022JD037879, 2023
Brum, M. and Schwanenberg, D.: Long-term evaluation of the Sub-seasonal to Seasonal (S2S) dataset and derived hydrological forecasts at the catchment scale, EGUsphere [preprint],https://doi.org/10.5194/egusphere-2022-419, 2022
Chwat, D., Garfinkel, C. I., Chen, W., & Rao, J. (2022). Which Sudden Stratospheric Warming Events are Most Predictable? Journal of Geophysical Research: Atmospheres, 127, e2022JD037521. https://doi.org/10.1029/2022JD037521
Li, W., Song, J., Hsu, P., & Wang, Y. (2022). Evaluation of the Forecast Performance for Week-2 Winter Surface Air Temperature from the Model for Prediction Across Scales - Atmosphere (MPAS-A), Weather and Forecasting. https://doi.org/10.1175/WAF-D-22-0054.1
Deoras, A., Turner, A.G. and Hunt, K.M.R. (2022), The structure of strong Indian monsoon low-pressure systems in Subseasonal-to-Seasonal prediction models. Q J R Meteorol Soc. https://doi.org/10.1002/qj.4296
Wie, J.; Kang, J.; Moon, B.-K. Superensemble Approach to S2S Model for Predicting Surface Air Temperature in Summer in East Asia from 2016 to 2020. Atmosphere 2022, 13, 701. https://doi.org/10.3390/atmos13050701
Cowan, T., Wheeler, M.C., de Burgh-Day, C. et al. Multi-week prediction of livestock chill conditions associated with the northwest Queensland floods of February 2019. Sci Rep 12, 5907 (2022). https://doi.org/10.1038/s41598-022-09666-z
Lin, H., Mo, R., & Vitart, F. (2022). The 2021 western North American heatwave and its subseasonal predictions. Geophysical Research Letters, 49, e2021GL097036. https://doi.org/10.1029/2021GL097036
Lawrence, Z. D., Abalos, M., Ayarzagüena, B., Barriopedro, D., Butler, A. H., Calvo, N., de la Cámara, A., Charlton-Perez, A., Domeisen, D. I. V., Dunn-Sigouin, E., García-Serrano, J., Garfinkel, C. I., Hindley, N. P., Jia, L., Jucker, M., Karpechko, A. Y., Kim, H., Lang, A. L., Lee, S. H., Lin, P., Osman, M., Palmeiro, F. M., Perlwitz, J., Polichtchouk, I., Richter, J. H., Schwartz, C., Son, S.-W., Statnaia, I., Taguchi, M., Tyrrell, N. L., Wright, C. J., and Wu, R. W.-Y.: Quantifying stratospheric biases and identifying their potential sources in subseasonal forecast systems, Weather Clim. Dynam., 3, 977-1001, https://doi.org/10.5194/wcd-3-977-2022, 2022.
Stan, C., Zheng, C., Chang, E. K., Domeisen, D. I., Garfinkel, C. I., Jenney, A. M., Kim, H., Lim, Y., Lin, H., Robertson, A., Schwartz, C., Vitart, F., Wang, J., & Yadav, P. (2022). Advances in the prediction of MJO-Teleconnections in the S2S forecast systems, Bulletin of the American Meteorological Society (2022). https://journals.ametsoc.org/view/journals/bams/aop/BAMS-D-21-0130.1/BAMS-D-21-0130.1.xml
Yan, Y., Liu, B., Zhu, C. et al.: Subseasonal forecast barrier of the North Atlantic oscillation in S2S models during the extreme mei-yu rainfall event in 2020. Clim Dyn (2021). https://doi.org/10.1007/s00382-021-06076-1
The January 2021 Sudden Stratospheric Warming and Its Prediction in Subseasonal to Seasonal Models. Jian Rao,Chaim I. Garfinkel,Tongwen Wu,Yixiong Lu,Qian Lu,Zhuoqi Liang, 2021,https://doi.org/10.1029/2021JD035057
Lin, H., Huang, Z., Hendon, H., & Brunet, G. (2021). NAO Influence on the MJO and its Prediction Skill in the Subseasonal-to-Seasonal Prediction Models, Journal of Climate, 34(23), 9425-9442. https://journals.ametsoc.org/view/journals/clim/34/23/JCLI-D-21-0153.1.xml
Schwartz, C., Garfinkel, C. I., Yadav, P., Chen, W., and Domeisen, D.: Stationary Waves and Upward Troposphere-Stratosphere Coupling in S2S Models, Weather Clim. Dynam., 3, 679-692, https://doi.org/10.5194/wcd-2021-58, 2022.
Endris, H. S., Hirons, L., Segele, Z. T., Gudoshava, M., Woolnough, S., & Artan, G. A. (2021). Evaluation of the Skill of Monthly Precipitation Forecasts from Global Prediction Systems over the Greater Horn of Africa, Weather and Forecasting, 36(4), 1275-1298. https://journals.ametsoc.org/view/journals/wefo/36/4/WAF-D-20-0177.1.xml
Pei-Ning Feng & Hai Lin (2021) Modulation of the MJO-Related Teleconnection by the QBO in Subseasonal-to-Seasonal Prediction Models, Atmosphere-Ocean, https://doi.org/10.1080/07055900.2021.1944045
Zheng, C., Kar-Man Chang, E., Kim, H., Zhang, M., & Wang, W. (2021). Subseasonal Prediction of Wintertime Northern Hemisphere Extratropical Cyclone Activity by SubX and S2S Models, Weather and Forecasting, 36(1), 75-89.https://doi.org/10.1175/WAF-D-20-0157.1
Feng, P., Lin, H., Derome, J., & Merlis, T. M. (2021). Forecast Skill of the NAO in the Subseasonal-to-Seasonal Prediction Models, Journal of Climate, 34(12), 4757-4769, https://doi.org/10.1175/JCLI-D-20-0430.1
Deoras, A., Hunt, K. M. R., & Turner, A. G. (2021). Comparison of the Prediction of Indian Monsoon Low Pressure Systems by Subseasonal-to-Seasonal Prediction Models, Weather and Forecasting, 36(3), 859-877. https://journals.ametsoc.org/view/journals/wefo/36/3/WAF-D-20-0081.1.xml
Kueh, MT., Lin, CY. The 2018 summer heatwaves over northwestern Europe and its extended-range prediction. Sci Rep 10, 19283 (2020). https://doi.org/10.1038/s41598-020-76181-4
Rao, J., Garfinkel, C. I., White, I. P., & Schwartz, C. (2020). The Southern Hemisphere minor sudden stratospheric warming in September 2019 and its predictions in S2S models. Journal of Geophysical Research: Atmospheres, 125, e2020JD032723. https://doi.org/10.1029/2020JD032723
Pan, B., K. Hsu, A. AghaKouchak, S. Sorooshian, and W. Higgins, 2019: Precipitation Prediction Skill for the West Coast United States: From Short to Extended Range. J. Climate, 32, 161-182, https://doi.org/10.1175/JCLI-D-18-0355.1
Rao, J., Garfinkel, C. I., Chen, H., & White, I. P. (2019). The 2019 New Year stratospheric sudden warming and its real-time predictions in multiple S2S models. Journal of Geophysical Research: Atmospheres, 124, 11155-11174. https://doi.org/10.1029/2019JD030826
Wang, S., Sobel, A.H., Tippett, M.K. et al. Prediction and predictability of tropical intraseasonal convection: seasonal dependence and the Maritime Continent prediction barrier. Clim Dyn 52, 6015-6031 (2019). https://doi.org/10.1007/s00382-018-4492-9
Zhou, Y., Yang, B., Chen, H. et al. Effects of the Madden-Julian Oscillation on 2-m air temperature prediction over China during boreal winter in the S2S database. Clim Dyn 52, 6671-6689 (2019). https://doi.org/10.1007/s00382-018-4538-z
Wang, S., Tippett, M. K., Sobel, A. H., Martin, Z., & Vitart, F. ( 2019). Impact of the QBO on prediction and predictability of the MJO convection. Journal of Geophysical Research: Atmospheres, 124, 11766-11782. https://doi.org/10.1029/2019JD030575
Li, W., J. Chen, L. Li, H. Chen, B. Liu, C. Xu, and X. Li, 2019: Evaluation and Bias Correction of S2S Precipitation for Hydrological Extremes. J. Hydrometeor., 20, 1887-1906, https://doi.org/10.1175/JHM-D-19-0042.1
D. I., Domeisen, Butler, A. H., Charlton-Perez, A. J., Ayarzaguena, B., Baldwin, M. P., Dunn-Sigouin, E. et al. (2020). The role of the stratosphere in subseasonal to seasonal prediction: 2. Predictability arising from stratosphere-troposphere coupling. Journal of Geophysical Research: Atmospheres, 125, e2019JD030923. https://doi.org/10.1029/2019JD030923
Domeisen, D. I. V., Butler, A. H., Charlton-Perez, A. J., Ayarzaguena, B., Baldwin, M. P., Dunn-Sigouin, E., et al (2020). The role of the stratosphere in subseasonal to seasonal prediction: 1. Predictability of the stratosphere. Journal of Geophysical Research: Atmospheres, 125, e2019JD030920.https://doi.org/10.1029/2019JD030920
Hai Lin, Ruping Mo, Frederic Vitart & Cristiana Stan (2019) Eastern Canada Flooding 2017 and its Subseasonal Predictions, Atmosphere-Ocean, 57:3, 195-207, https://doi.org/10.1080/07055900.2018.1547679
Minami, A., & Takaya, Y. (2020). Enhanced Northern Hemisphere correlation skill of subseasonal predictions in the strong negative phase of the Arctic Oscillation. Journal of Geophysical Research: Atmospheres, 125, e2019JD031268. https://doi.org/10.1029/2019JD031268
de Andrade, F.M., Coelho, C.A.S. & Cavalcanti, I.F.A. Global precipitation hindcast quality assessment of the Subseasonal to Seasonal (S2S) prediction project models. Clim Dyn 52, 5451-5475 (2019). https://doi.org/10.1007/s00382-018-4457-z
Quinting, J. F., & Vitart, F. (2019). Representation of synoptic-scale Rossby wave packets and blocking in the S2S prediction project database. Geophysical Research Letters, 46, 1070-1078. https://doi.org/10.1029/2018GL081381
Zheng, C., Chang, E. K.-M., Kim, H., Zhang, M., & Wang, W. (2019). Subseasonal to seasonal prediction of wintertime northern hemisphere extratropical cyclone activity by S2S and NMME models. Journal of Geophysical Research: Atmospheres, 124, 12057-12077. https://doi.org/10.1029/2019JD031252
Son, S.-W., Kim, H., Song, K., Kim, S.-W., Martineau, P., Hyun, Y.-K., & Kim, Y. (2020). Extratropical prediction skill of the Subseasonal-to-Seasonal (S2S) prediction models. Journal of Geophysical Research: Atmospheres, 125, e2019JD031273. https://doi.org/10.1029/2019JD031273
Lim, Y., Son, S., Marshall, A.G. et al. Influence of the QBO on MJO prediction skill in the subseasonal-to-seasonal prediction models. Clim Dyn 53, 1681-1695 (2019). https://doi.org/10.1007/s00382-019-04719-y
Lim, Y., S. Son, and D. Kim, 2018: MJO Prediction Skill of the Subseasonal-to-Seasonal Prediction Models. J. Climate, 31, 4075-4094, https://doi.org/10.1175/JCLI-D-17-0545.1
Jie, W., Vitart, F., Wu, T. and Liu, X. (2017), Simulations of the Asian summer monsoon in the subseasonal to seasonal prediction project (S2S) database. Q.J.R. Meteorol. Soc., 143: 2282-2295. https://doi.org/10.1002/qj.3085
Vitart, F. (2017), Madden-Julian Oscillation prediction and teleconnections in the S2S database.Q.J.R. Meteorol. Soc, 143: 2210-2220. https://doi.org/10.1002/qj.3079
All plots shown in these pages are created with the NCAR Command Language (Version 6.1.2) [Software]. (2013).
Boulder, Colorado: UCAR/NCAR/CISL/VETS. http://dx.doi.org/10.5065/D6WD3XH5