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ABSTRACT
Results of targeting and assimilation experiments in a quasi-geostrophic atmo-

spheric model are presented and discussed. The basic idea is to assimilate observations
in the unstable subspace (AUS) of the data-assimilation system. The unstable sub-
space is estimated by breeding on the data assimilation system (BDAS). the analysis
update has the same local structure as the observationally forced bred modes.

Use of adaptive observations, taken at locations where bred vectors have maximum
amplitude, enhances the efficiency of the procedure and allows the use of a very limited
number of observations and modes.

The performance of the targeting and assimilation design is tested in an idealised
context, under perfect model conditions. It is shown that the process of driving the
control solution toward the true trajectory accomplished by the assimilation reduces
the number and growth of unstable modes. By observing and assimilating the unstable
structures it is then possible to stabilise the assimilation system so that few obser-
vations are sufficient to keep the analysis error within very low bounds, even in the
presence of observational noise.

In an idealised limited area model configuration the number and frequency of
observations necessary to control the system is shown to be related to the properties
of its unstable subspace.

1 Introduction

Data assimilation and observation strategies, possibly
encompassing adaptive (or targeted) observations, are con-
nected by the aim to reduce the uncertainty in the estimate
of the present and future state of the atmosphere (Daley,
1991; Ghil, 1997; Talagrand, 1997; Kalnay, 2002). In spite
of the intense activity related to field experiments, the im-
pact on forecast quality of adaptive observations is perhaps
less satisfactory than expected and is neutral or negative
in some cases (Szunyogh et al., 2002; Fourrié et al., 2006).
Therefore it seems worthwhile to perform further studies
that may improve our understanding of the problem and
possibly be useful for future applications.

From a theoretical point of view, it is well known that
assimilation errors intrinsically project on the unstable man-
ifold of the system (Pires et al., 1996) and that instabilities
can be tracked by advanced dynamically based assimilation
techniques (Todling and Ghil, 1994; Ghil and Todling, 1996).
In a previous work, Trevisan and Uboldi (2004, hereafter
TU) introduced the concept of assimilation in the unstable
subspace (AUS) and the stability of the data assimilation
system. They estimated the instabilities by assimilating ob-
servations in the perturbed trajectories, a procedure intro-

? Corresponding author.
ISAC-CNR, via Gobetti 101, 40129 Bologna, Italy; e-mail: car-
rassi@fe.infn.it

duced by Lorenz and Emanuel (1998) and consistent with
the perturbative equations of the data-assimilation system.
The same method used here to estimate the unstable di-
rections of the data assimilation system, is referred to as
breeding on the data assimilation system (BDAS).

In the data assimilation system, the analysis step is
equivalent to a forcing added to the model equations and, as
remarked by TU, this observational forcing in principle re-
duces the growth rate and the number of unstable directions
with respect to those of the original system. The impor-
tant result, confirmed by the present study, is that, given
a system that possesses positive Lyapunov exponents, by
means of a sufficiently large number and frequency of ob-
servations, the corresponding data-assimilation system can
be stabilised, in the sense that the number of positive expo-
nents is reduced, possibly to zero. The system becomes more
controllable: its instabilities can be easily tracked and effi-
ciently eliminated, particularly by means of properly located
adaptive observations.

In the context of the 40-variable Lorenz (1996) model,
TU showed that only a few observations and few unstable
structures were sufficient to drastically reduce the error of
the data assimilation system solution. Further developments
of the theory introduced by TU, are found in Uboldi et al.
(2005, hereafter UTC) and Uboldi and Trevisan (2006, here-
after UT), who applied AUS and BDAS to the atmospheric
quasi-geostrophic model of Rotunno and Bao (1996) and to a
primitive equation ocean model (Bleck, 1978). Both studies
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were performed in the context of perfect model and perfect
observations.

In the present follow-up study we extend the application
in the QG-model to the noisy observations case. We then
examine in more depth the question of stabilisation induced
by the assimilation of observations in a global model and by
boundary forcing in an idealised limited area model.

The following simple arguments, at the basis of the
present work, illustrate why it is conceivable that the same
concepts can be applied in a more general context and that
the results of this study may turn out to be relevant for
atmospheric and oceanic prediction. Forecast models have
a huge number of positive exponents. However, suppose we
make an hypothetical experiment where all model variables
at each analysis time are observed in all but a small portion
of the domain. We expect the number of unstable modes that
can grow in the data assimilation system and their growth
rate to be reduced since no instability can grow in the ob-
served part of the domain. This is similar to what happens in
a limited area model, where the influence of boundary condi-
tions, that can be seen as a special case of observational forc-
ing, inhibits error amplification in domains of small enough
size (Vannitsem, 2003).

Even in global scale models we can expect that the as-
similation of a large number of observations may have a sig-
nificant stabilising effect. Similarly, with reference to target-
ing, it is not surprising that the number of unstable modes
that can grow in such adaptive data-assimilation systems
can be greatly reduced if every time an unstable structure
starts to grow we can detect it by special observations. This
is exactly what happens both in the experiments of TU,
UTC, UT with perfect observations and in the present ones
that include observational noise. In particular, the present
results give more insight in the stabilisation process and
quantify the dimension of the unstable subspace of the data
assimilation system.

The paper is organised as follows. In Section 2, we re-
view the work of TU and discuss in detail the theory at the
basis of assimilation in the unstable subspace (AUS); fur-
thermore we discuss how the observability condition (Ghil,
1997) can be applied in the context of the tangent linear as-
sumption. In Section 3 the stability of the data assimilation
system is discussed. Section 4 introduces breeding on the
data assimilation system (BDAS), a variant of the well es-
tablished breeding technique (Toth and Kalnay, 1993; 1997).
The validity of the BDAS technique goes beyond the present
work context. In fact, BDAS constitutes a natural way to
estimate how a particular observational network modulates
the growth of free bred vectors and could replace the use
of a masking function (Toth and Kalnay, 1997; Wang and
Bishop, 2003). Section 5 illustrates technical aspects of the
implementation with adaptive observations. In Section 6 the
model and experimental setup are described. Section 7 illus-
trates the performance of AUS in comparison with 3DVar
and presents results relative to the stabilisation obtained by
observational forcing in the noisy observational case. In Sec-
tion 8 we estimate the properties of the unstable subspace
of an idealised limited area model in a perfect observational
setting and investigate the observability condition. General
conclusions are drawn in Section 9.

2 Assimilation in the unstable subspace (AUS)

In this section, the basic elements of the method pro-
posed by TU are reviewed and further evidence is provided
to motivate its foundations. The perfect observations case is
considered with particular attention to the observability of
the system.

The system that we are considering is given by the
model equations subject to observational forcing at each
analysis step and its solution is the solution of the data as-
similation system, i.e. the complete analysis-forecast cycle.
The model is assumed to be perfect.

In the present formulation (TU):
- the control trajectory forecast state constitutes the

background state;
- the analysis solution is obtained by confining the anal-

ysis increment in the unstable subspace of the control tra-
jectory;

- the unstable vectors are obtained as solutions of the
perturbative equations of the observationally forced system
(TU).

One advantage is that, when errors are sufficiently
small, the analysis state is on the attractor of the system
(Lorenz, 1984; Trevisan and Pancotti, 1998).

Following the conventions of Ide et al. (1997), yo is the
M -dimensional observation vector, xf represents the back-
ground model forecast state, xa the analysis state. R is the
observational error covariance matrix, H the linearised ob-
servation operator, Pa and Pf the analysis and background
error covariance matrices respectively.

Let [e1, e2, ...eI ] represent the, possibly non-orthogonal,
Lyapunov vectors (Legras and Vautard, 1996; Trevisan and
Pancotti, 1998) of the forced system, ordered by decreasing
global exponent. If I is the number of degrees of freedom of
the system, this set is a basis for the tangent space (Oseledec,
1968).

Let Mk be the tangent linear propagator between time
tk and tk+1. We can write:

Mk = Ek+1ΛkE
−1

k (1)

where E represents the matrix whose columns are the
Lyapunov vectors, Λk is diagonal and its elements are the

amplification factors, exp

[

∫ tk+1

tk

λi(t)dt

]

where λi are the

local Lyapunov exponents, in decreasing order, correspond-
ing to the vectors ei.

Accordingly, during the forecast step:

η
f

k+1
= Ek+1ΛkE

−1

k η
a
k (2)

where η
a and η

f represent the analysis and forecast
error respectively.

Following TU, we let the analysis increment be confined
to the subspace spanned by the leading N Lyapunov vectors.
Hereafter we denote by E the (I ×N) matrix formed by the
leading N column vectors. The analysis solution obtained
by minimising the reduced-order cost function is:

xa = (I − KH)xf + Kyo (3)

where, subject to the above constraint:

c© 0000 Tellus, 000, 000–000



SHORT TITLE OF ARTICLE 3

K = EΓ(HE)T
[

R + (HE)Γ(HE)T
]

−1
(4a)

or, equivalently:

K = E
[

Γ−1 + (HE)T R−1HE
]

−1
(HE)T R−1 (4b)

and Γ is a N × N symmetric positive definite matrix,
representing the background error covariance matrix in the
subspace spanned by the columns of E. We observe that the
matrices to be inverted in the expressions (4a) and (4b) have
order M and N respectively.

The distribution of data in space and time, in relation to
the number, position and growth rate of the unstable struc-
tures, determine the possibility to control error growth. Full
advantage of the present approach can be taken by means
of an adaptive strategy, by which observations are located
where the amplitude of the unstable structures is maximum.

The adaptive observation strategy, that is consistent
with the assimilation in the unstable subspace and that is
adopted in the present work, is to make measurements at
locations where the unstable structures that appear in the
expression for the gain matrix have maximum amplitude.
Then, the same structures that are used to locate adap-
tive observations are also used to assimilate observations,
according to (3) and (4).

As shown in previous works (TU, UTC), a progressive
reduction of the error can be obtained even using a single
vector e and a single observation located in its maximum,
at each analysis time.

2.1 Perfect observations and the observability condition

In this subsection we investigate the consequences, on
the analysis error and on its estimate, of confining the anal-
ysis increment in a given subspace on the analysis error and
on its estimate. To this end we make the simplifying assump-
tion of perfect observations.

The forecast error covariance matrix can be decom-
posed, in general, as:

Pf = Pf

E + Pf

C (5)

where Pf

E is estimated by means of N independent vec-
tors, stored in the N columns, en, of the matrix E:

Pf

E = EΓET (6)

Suppose that, neglecting the residual matrix Pf

C , Pf

E is
used instead of Pf to assimilate M > N perfect observa-
tions, distributed in such a way that the rank of the matrix
HE is maximum (N), so that each column vector en is de-
tected by at least one observation.

With perfect observations, the relation between the
forecast and analysis error covariance matrices is:

Pa = (I − KH)Pf (I −KH)T (7)

In the hypothesis N = M , right multiplying (4a) by
HE after setting R = 0, we have:

KHE = E (8)

If the error is actually confined in the subspace spanned
by the column vectors of E, then Pf

C = 0. By setting Pf =

Pf

E in (7) and making use of (8) we obtain:

Pa = 0 (9)

This means that, in this idealised case, a number of
observations equal to the dimension of the subspace, where
the background error is confined, is sufficient to determine
the state exactly. This is the observability condition under
the above hypothesis.

If, instead, the number of unstable directions consid-
ered in the construction of the gain matrix is smaller than
the dimension of the subspace where the actual background
error is confined, then Pa will not be zero, but it will be
given by:

Pa = (I − KH)Pf

C(I − KH)T (10)

Only some components of the background error will be
eliminated (in the perfect observation case) or at least re-
duced.

At the next analysis step, the error will strongly project
on the subspace that we have ignored. This makes the recur-
sive use of the same subspace undesirable and is the reason
for introducing the refresh procedure described in Section 4.
Further discussion on the need for a refresh procedure can
be found in UT.

3 Stability of the data assimilation system

The reason to consider the linearised equations of the
data-assimilation system is two-fold. On the one hand, we
need to estimate the unstable vectors of the system because
they appear in the analysis solution. On the other, the study
of the stability of the analysis solution is necessary to ensure
its independence from the initial guess and to establish the
conditions of convergence to the truth (see TU and UT).

Given the model system equations:

xk+1 = M(xk) (11)

the stability of the solution is studied by linearising the
equations about a nonlinear trajectory. The tangent linear
propagator M evolves perturbations from time tk to time
tk+1:

x′

k+1 = M(xk)x′

k (12)

where the vector x
′

k represents a small perturbation of
the nonlinear reference trajectory, solution of (11), at time
step k. The number of positive Lyapunov exponents of the
model system may be quite large.

Turning now to the analysis cycle, its solution is subject
to observational forcing at the analysis step. The evolutive
equation of the system forced by the assimilation process at
regular observation time intervals, can be written as:

c© 0000 Tellus, 000, 000–000



4 AUTHOR RUNNING HEAD

xa
k+1 = (I − KH◦)M(xa

k) + Kyo
k+1 (13)

where the new analysis state is obtained by applying the
assimilation (3) to the forecast state obtained by the nonlin-
ear model evolution (11) of the previous analysis state and
H represents the (possibly nonlinear) observation operator.

In the hypothesis that any perturbed trajectory under-
goes the same forecast and assimilation steps, with the same
(possibly noisy) observations, as the control analysis solu-
tion, the linear equations describing the stability of the as-
similation system at the analysis step read:

xa′

k+1 = (I − Kk+1H)Mxa′

k (14)

where M = M(xa
k) is the Jacobian of M, H = H(xf

k+1
)

is the Jacobian of H and, as in eq. (12), “primed” variables
represent perturbations. These equations describe the linear
perturbative dynamics of the complete observation-analysis-
forecast cycle.

Comparing (14) with (12), a stabilisation with respect
to the original model system is expected.

Furthermore we notice that, under perfect model con-
ditions and perfect observations, if the control analysis so-
lution is a sufficiently accurate approximation of the true
trajectory, the analysis error will obey the same equations
(14) as the perturbations to the control. If the maximum
Lyapunov exponent of the data assimilation system is neg-
ative, the analysis solution will be independent of the ini-
tial condition, a necessary condition for convergence to the
truth.

The full spectrum of Lyapunov exponents associated to
the assimilation cycle can be obtained with standard tech-
niques (Benettin et al., 1980): a set of small orthogonal per-
turbations, superimposed to a given reference nonlinear tra-
jectory, is evolved by the forced tangent linear equations
(14) and orthonormalized at regular time intervals.

4 Breeding on the data assimilation system
(BDAS)

In applications, some of the simplifying hypothesis of
Section 3 need to be re-examined, to confront with real sit-
uations.

When dealing with a system such as the atmosphere
or the ocean, the chain from theory to application is not
necessarily straightforward and it becomes necessary to find
compromises between basic concepts and real complexities.
A notable example is the delicate passage from Lyapunov
vectors to bred vectors. The breeding method for generating
ensemble perturbations devised by Toth and Kalnay (1993;
1997) contains the basic elements for computing Lyapunov
vectors, except that the rescaling amplitude of bred vectors
is not infinitesimal. In fact it is necessary to calibrate the
rescaling amplitude in atmospheric NWP models in order
to prevent the fast growth of the small scale instabilities to
become dominant.

In the QG model where the only instabilities are synop-
tic scale, a distinction between Lyapunov vectors and bred
vectors becomes irrelevant. However, since the final goal is

to develop assimilation methods that may work in an oper-
ational environment, we must use tools that are adequate
in that context. Therefore, regardless of the rescaling ampli-
tude that, in the QG model, can be chosen to be infinitesi-
mal, breeding is the viable choice that we turn to for future
applications.

As in TU, the bred vectors are meant to represent the
instabilities of the data assimilation system. Therefore, an
important difference between the procedure used in this
study and a standard breeding is that here the bred modes
are considered to be solution of the perturbative equations
of the data assimilation system (14), rather than those of the
original model (12). As discussed in Section 2, this means
that the perturbed trajectories undergo the same forecast
and analysis steps as the control trajectory.

As in the normal breeding procedure, a small random
isotropic perturbation is superimposed to the control vari-
ables. The perturbed trajectories are then integrated with
the non-linear model. At the analysis time both the control
and perturbed trajectories assimilate the observations. The
perturbations are then re-normalised to the initial amplitude
and the cycle is repeated.

As usual, if the perturbations was orthonormalized and
their amplitude were infinitesimally small, in the limit of in-
finite breeding time the bred vectors of the data assimilation
system would converge to the Lyapunov vectors of the same
system (Benettin et al., 1980).

A second point regards the breeding time. It cannot be
infinite, but it has to be made long enough to capture the
structure of the most unstable modes. These are the insta-
bilities we wish to control to reduce the forecast error and we
also expect the background error to have a large component
in the unstable subspace. In fact, along the analysis cycle
there may be errors that have had a virtually infinite time
to grow. If additional errors are not introduced through the
observations (or in the analysis step), after a certain number
of steps the only errors will be those that projected on some
unstable direction at the first step of the cycle and which
could not be eliminated.

In our application we have optimised the breeding time
to obtain the largest projection of the forecast error on the
bred vectors; the amplitude of the perturbations has been
chosen to be small enough that their evolution can be con-
sidered linear.

In the following we describe how the BDAS procedure
is implemented in the case of a single bred vector. At each
analysis time a new perturbation is introduced. After the
breeding time - typically much longer than the assimilation
interval - has elapsed, the bred vector is used in the as-
similation procedure as a proxy of an unstable mode. At
the next analysis step the correction is computed along a
different vector, previously introduced and bred to repre-
sent a different unstable direction. According to their def-
inition, all bred perturbations are subject to the number
of assimilations that take place during their breeding time.
As discussed in Section 2, at a particular analysis step the
assimilation virtually eliminates the error along the direc-
tion of the currently used bred vector. Therefore, after be-
ing used, the bred vector is discarded and is replaced by a
new random perturbation, that starts a new breeding cycle.
This refresh operation aims at a systematic spanning of the
unstable subspace of the system. As a consequence of the
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refresh operation, the observation-forced perturbations are
naturally kept independent and do not need to be orthog-
onalised. The described procedure has been generalised to
consider a set of bred vectors rather than a single one (UT).

5 Use of a single bred vector for targeting and
assimilation

In all results presented here we apply AUS by making
use of a single bred vector at each analysis step: N = 1 and
the matrix E reduces to the single column vector e.

In what follows we discuss in detail the case of a single
adaptive observation, (M = 1) , while in Appendix A we
describe the case of more than one observation (M > 1).

As discussed in Section 2 and in TU, the adaptive ob-
servation should measure the largest component of the bred
vector e. In practice, if we measure a particular variable, the
adaptive observation will be placed at the location where the
bred vector attains the maximum value of that variable.

If the background error along the single unstable direc-
tion e has an estimated amplitude γ, the background error
covariance matrix appearing in the gain matrix will be:

Pf = γ
2eeT (15)

Then, relation (3) reduces to:

xa = xf +
γ2(He)2

γ2(He)2 + σ2

(yo − Hxf )

He
e (16)

where σ2 is the observation error variance of the sin-
gle observation. In the present application (see Section 6), σ

depends both upon the type of variable being observed and
the observation level (Morss, 1999) and the observation op-
erator is inerenthly linear. We notice that in the particular
case discussed here, (M = 1, N = 1), the vectors yo, Hxf

and He reduce to scalars.
The first ratio on the right hand side of (16) represents

the relative weight to be given to the observation with re-
spect to the background, when the error along the direction
e is projected on the observation subspace. It only modifies
the amplitude of the correction, not its direction, which is
given by the vector e.

When observations are perfect, σ = 0 and (16) becomes:

xa = xf +
yo − Hxf

He
e (17)

and the correction in the direction e fits the observation
exactly. In the experiments with perfect observations direct
use of (17) is made to assimilate the adaptive observations
(see also UTC), while in the experiments with noisy obser-
vations we turn to (16). In the latter case, besides estimating
the direction e, we need to evaluate γ.

The amplification of the error in the forecast step and
its reduction at the analysis step, needed to evaluate the
forecast error projection along e, could be recursively eval-
uated if the same direction e were maintained during the
analysis cycle. The estimate of the forecast error covariance
would then follow from (15). Instead, for the reasons ex-
plained above, we adopted a refresh operation. Therefore

we chose to make a statistical evaluation of the background
error along the current (and renewed) direction used for the
assimilation.

More details on the estimate of γ can be found in Ap-
pendix B.

6 Experiments with the QG Model

6.1 The model

The test ground of the method is a quasi-geostrophic
model (Rotunno and Bao, 1996) already used by several au-
thors in data assimilation and adaptive observations studies
(Morss et al., 2001; Hamill and Snyder, 2000; 2002; Hamill
et al., 2002; Corazza et al., 2003). The model exhibits dy-
namical behaviour similar to real atmospheric flow, but is
simple enough to make long runs feasible.

It is a β-plane periodic channel model with rigid lids,
with 64 longitude (16000 km), 33 latitude (8000 km) grid-
points and a depth of 9 km. Potential vorticity is defined
on 5 inner vertical levels and potential temperature at top
and bottom boundaries, so that the number of degrees of
freedom of the model is (64x33x7=)14784. It is forced by
relaxation to a zonal mean state with constant stratification
and damped by a ∇4 horizontal diffusion and by an Ekman
pumping at the surface.

The model, with the present resolution, has 24 posi-
tive Lyapunov exponents; the leading exponent is approx-
imately .31 days−1, corresponding to a doubling time of
about 2.2 days. The Kaplan-Yorke attractor dimension is
approximately 65.2.

6.2 Implementation of BDAS and AUS

In all the observation system simulation experiments
described below, the model is considered to be perfect and
a long reference model trajectory represents the true state
evolution from which observations are taken.

In order to simulate an irregular observation distribu-
tion, with densely and poorly observed areas, the domain
has been divided into two sectors. A first portion, referred
to as ”land”, is completely covered by observations while the
remaining part represents an ”ocean” void of observations
except for the possible addition of observations located at a
particular grid point adaptively chosen at each assimilation
time (Lorenz and Emanuel, 1998, TU, UTC)

As discussed in Section 2 and 4, the bred vectors are ob-
tained by BDAS which means that at each assimilation time
all, perturbed and unperturbed, trajectories are subject to
the same assimilation process. In the targeting-assimilation
application that follows, BDAS is used for two purposes: to
identify the location for the adaptive observations and to
estimate the unstable vectors that enter the AUS analysis
solution. The adaptive observation location is chosen as the
horizontal grid point where the current bred vector attains
its maximum value (in absolute value, for the variable being
observed).

The breeding time has been optimised to obtain the
largest projection of the forecast error on the bred vectors.
By varying the breeding time from 1 to 10 days, the fore-
cast error projection on the bred modes increases signifi-
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cantly up to 6 days, while gradually smaller improvements
are obtained by using longer breeding times. In view of these
results, the breeding time has been set to 10 days.

We recall that the bred vectors are discarded after being
used and new random perturbations are introduced. Due to
this refresh operation, the number of bred vectors that are
simultaneously computed is equal to the ratio between the
breeding time and the assimilation interval: for example,
for a breeding time of 10 days, an assimilation interval of
12 hours implies that 20 bred vectors are simultaneously
computed.

TU already noted, in the context of the Lorenz-Emanuel
model, the necessity to regionalize the correction made us-
ing the unstable structure in order to avoid the following
unwanted effect. If the background error and the bred mode
were correlated over the whole domain there would be no
need of a regionalization. Instead, the background error is,
in general, the superposition of different modes and the bred
vector itself (that only ideally represents a single Lyapunov
vector) present several spatially separated structures. Con-
sequently, a perfect correlation cannot be expected through-
out the domain and the assimilation only leads to a reduc-
tion of the error in the area surrounding the observations.
The presence of secondary structures in the bred mode, in
regions distant from the observations, with opposite corre-
lation with the background with respect to the observed
structure, can lead to a correction with the wrong sign. We
found the same problem during the experimentation with
the QG model and also in the present work we make use of
a modulating function, choosing a simple Gaussian with a
decay scale of 2500 Km (10 grid points). This scale is large
enough to preserve the structure of the bred mode and con-
sequently of the analysis increment in a wide area around
the observation, nevertheless this modulation is sufficient to
overcome the problems encountered.

7 Results

This section is aimed on one hand at estimating the im-
pact of the BDAS targeting strategy, on the other at compar-
ing the performance of AUS with that of a standard 3DVar
assimilation scheme, when only poor and irregular informa-
tion about the state of the system is available. To this end, as
explained in Section 6, we intentionally divided the model
domain into a land area, where errors are kept small by
a complete observation coverage, and an ocean area where
no observations are present and errors are free to grow, un-
less adaptive observations are introduced. Land observations
consist of soundings (vertical profiles of temperature and
horizontal velocity) and are assimilated by means of 3DVar
(Parrish and Derber, 1992; Morss, 1999). The land covers
one third of the domain (grid points 1-20). A single adap-
tive observation over the ocean, located by means of BDAS
(see Section 6) is introduced at each assimilation step and
consists either of a sounding or of the measurement of a sin-
gle scalar quantity, such as temperature or a velocity com-
ponent, at the targeted location and level. Using a similar
observational network setting and perfect observations UTC
already obtained a dramatic improvement when AUS is used
instead of 3DVar to assimilate the adaptive observations.

All experiments described below consist of 2-years as-

similation cycles and are initialised with the solution of a
long analysis cycle that assimilates only land observations
by means of 3DVar. The random observation errors that
are added to the true values are produced using a Gaussian
distribution and the eigenvectors and eigenvalues of the ob-
servation error covariance matrix. R is the same as in Morss
(1999) who adapted it from the operational error covariance
described in Parrish and Derber (1992). The assimilation
interval is set to 6hr.

7.1 3DVar - AUS comparison

The following two experiments (3DVar-BDAS and AUS-
BDAS) are aimed at comparing the relative performance of
AUS and 3DVar when the same observational network and
adaptive strategy is used. In the first, 3DVar is used to as-
similate an adaptive vertical sounding while in the second
the adaptive observation, consisting of a single temperature
measurement, is assimilated with AUS via (16). In both ex-
periments, fixed land observations are assimilated by means
of 3DVar and the adaptive observation location is identi-
fied using BDAS. Thus the main difference between the two
experiments is in the way the adaptive observations are as-
similated and in the dimension of the adaptive observation
vector which, in the first experiment, is 21 (3 scalar quanti-
ties at 7 levels) while it is only 1 in the second.

Fig. 1 shows the normalised (with respect to natural
variability) root mean square analysis error (potential en-
strophy norm) as a function of time. The dashed line is rela-
tive to the experiment with 3DVar (adaptive vertical profile
assimilated using 3DVar), while the continuous line refers
to the experiment with AUS (one temperature observation
assimilated using (16)). After about two weeks the error
in experiment with AUS drops drastically and thereafter is
confined within a range of values below 10% of the natural
variability. The improvement with respect to 3DVar appears
even more impressive considering that AUS assimilates only
a temperature observation rather than a sounding. When a
single temperature observation, rather than a sounding, is
assimilated with 3DVar, the average error is about one or-
der of magnitude larger than that obtained with AUS. On
the other hand, only minor improvements are obtained when
assimilating a complete sounding with AUS.

The panels of Fig. 2 show the horizontal structure of the
variability-normalised, vertically and time averaged (over
the last 580 days) analysis error. In both panels the error
spatial structure clearly reflects the specific observational
configuration, with the land covered by observations. It is
possible to note a strong error maximum over the eastern
part of the ocean, and a partial downstream advection over
the western portion of land in correspondence to the jet
stream. But apart from these similarities, the error in the
two panels differs enormously. In panel (b), that refers to
AUS-BDAS experiment, the maximum error over the ocean
is one third of the corresponding maximum in experiment
with 3DVar.

Fig. 3 shows the longitudinal dependence of the error in
the two experiments obtained from the fields of Fig. 2, after
averaging also in latitude. It appears that by combining an
adaptive observation strategy with the dynamic assimilation
(AUS), the unstable components of the forecast error can be
efficiently eliminated to the extent that the error over the
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ocean becomes comparable on average to the error over land
of experiment with 3DVar.

These results clearly reveal that bred modes constructed
by BDAS share a strong similarity with the actual flow de-
pendent forecast error. Such a good estimate of the fore-
cast error is in turn at the basis of AUS ability to exploit a
smaller amount of information by spreading the analysis cor-
rection in a dynamically consistent manner. Moreover, once
the errors have been reduced in the course of the assimila-
tion, the unstable vectors become more representative of the
background errors which can then be efficiently controlled.
We have argued that the analysis error reduction is accom-
panied by the reduction of the dimension of the unstable
subspace; as a consequence, the forecast error is expected to
be described by few bred modes.

The stability analysis discussed in Section 3 is now ap-
plied and the leading exponent of the forced assimilation
system is computed. Fig. 4 shows instantaneous and time-
average values of the growth rate for experiments 3DVar-
BDAS and AUS-BDAS. As can be seen, while the instanta-
neous values of the growth rate for the 3DVar experiment
shows large fluctuations, the dynamical consistency of AUS
is reflected in the more regular behaviour of the correspond-
ing exponent. Moreover the leading exponent for the AUS
experiment is negative. A negative growth rate formally
means that the unstable subspace of the system is zero-
dimensional, a necessary condition for the independence of
the analysis solution from the initial condition. However,
stability guarantees uniqueness of the analysis solution but
not convergence to the truth.

As a final point, we would like to comment on the use of
results from stability analysis in relation to the quality of an
assimilation scheme. As discussed in Section 3, a connection
between the level of error and the stability of the solution
can be expected only if the control analysis solution is a
sufficiently accurate estimate of the true trajectory. Only
in this hypothesis, perturbations of the reference trajectory
(the “truth”) and those of the control analysis solution will
obey approximately the same tangent linear equations.

To complete the comparison of AUS with 3DVar, time
and domain averaged forecast error are shown in Fig. 5. It
should be stressed that the error doubling time in the first
12 hours of forecast in experiments with AUS is about 6
days and becomes comparable to the doubling time of 2.2
days only after 60 hours of integration. This means that
the most unstable modes were effectively eliminated by the
AUS scheme. In experiments with 3DVar the analysis error
is already too large for any comparison with doubling times
of infinitesimal errors to be significant.

7.2 Performance of BDAS

In order to provide an estimate of the relative benefit
of the adaptive observations strategy based on BDAS we
perform the following three experiments where observations
are assimilated with 3DVar:

- LO: Observations only over land;
- RO: Land observations plus a randomly located ocean

observation (vertical sounding);
- FO: Land observations plus a fixed observation (ver-

tical sounding) located at a point where a forecast error
maximum is expected.

The ocean observation location of experiment FO, has
been chosen as the point where a maximum forecast error is
found in experiment LO: x=56, y=16. In Table 1 the RMS
analysis error and the leading exponent for LO, RO, FO,
3DVar-BDAS and AUS-BDAS, are shown.

The insertion of a supplemental fixed sounding over the
ocean (FO) reduces the RMS analysis error by about 25%
but the system is still unstable. Experiment RO gives simi-
lar results although a small improvement with respect to FO
is achieved. Although, when placed where maximum error
are statistically expected, a fixed observation should give
the maximum benefit, it is however less beneficial than a
randomly located observation because it provides redundant
information in the specific area that is repeatedly observed.
When BDAS is used to identify the location of the adap-
tive observations, its impact on the analysis is evident. The
RMS error is reduced by about 60% with respect to LO and
the leading exponent of the analysis-forecast system solu-
tion is also significantly reduced. Finally, when AUS is used
in combination with BDAS the improvement is remarkable:
the error is reduced to 6% of the natural variability and the
forced system is stabilised.

8 Stabilisation of the assimilation system:
experiments in a limited area model
configuration

The following experiments provide evidence in support
of the argument that the assimilation cycle can be consid-
ered as a forced system and of the conclusion that the obser-
vational forcing, acting on the system at the analysis step,
results in a reduction of the dimension of the unstable sub-
space.

In particular, the more efficient is the observational net-
work and the analysis scheme in driving the control trajec-
tory towards the true one, the more drastic is the stabilisa-
tion of the assimilation system.

The first example is given by simulations with a hypo-
thetical limited area model of variable size where the time
dependent boundary conditions constitute the observational
forcing. In the second, the same model is endowed with ad-
ditional observations and with targeting and assimilation
algorithms (AUS-BDAS). We restrict our attention to the
perfect observation case that is relevant for establishing the
observability condition (see Sec. 2.1).

Starting from the periodic channel QG model, a limited
area model of variable east-west extension is constructed by
reducing the number of internal longitudinal gridpoints. Per-
fect lateral boundary conditions for the limited area model
are prescribed in the following way. A trajectory obtained by
integrating the channel model represents the truth. The lat-
eral boundary conditions for the limited area model are pre-
scribed by setting the values of the model variables equal to
the true values at all gridpoints in a longitudinal portion of
the channel. By varying the number of grid points, a limited
area model of variable longitudinal extension is obtained.
A cubic interpolation relaxation band is introduced at the
east-west boundaries. Without any additional observations,
the instabilities are free to grow within the limited area do-
main and we expect the number of unstable modes that can
grow to be dependent on the domain size. Therefore when, in
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addition to the boundary forcing, we introduce observations
within the limited area domain, we expect a smaller number
and frequency of observations to be needed to control the
system when the domain is of smaller size.

In a first set of experiments, that are referred to as NOA
(no assimilation of observations), the limited area model
equations are integrated without additional observations.
The dimension of the unstable subspace and the leading ex-
ponent as a function of the domain size are computed. In a
second set of experiments, perfect adaptive observations are
assimilated with a different assimilation interval: 3, 6, 12 or
24 hours. A single adaptive observation is assimilated at each
analysis time. The location of the adaptive observations is
determined by BDAS and the observations are assimilated
with AUS. The analysis error is estimated in all cases as an
average over the last 580 days of two years analysis cycles.

Tables 2 and 3 summarise respectively the error statis-
tics and stability analysis of the experiments. The longi-
tudinal extension of the limited area domain varies from
7500 km (domain length, DLE=30 grid points) to 15000 km
(DLE=60). In the experiments indicated as NOA, the as-
similation system is unstable for all limited-area extensions
considered, except for the smallest one: when the system be-
comes stable (leading exponent, λmax= -.007), the analysis
error drops from 22% to 9% of the natural variability.

We notice that, even if the model and the boundary
conditions are perfect the error is not zero. This means that
errors are introduced that prevent the solution to converge
to the truth, even if the model and boundary conditions
are perfect: stability is a necessary but not sufficient con-
dition for convergence to the truth. The dimension of the
unstable subspace decreases gradually from 7 to 0, by de-
creasing the domain size from its maximum to its minimum
extension. The leading Lyapunov exponent also gradually
decreases from a value of .160 (DLE=60) to a negative value
(DLE=30). The Kaplan-Yorke attractor dimension in turn
decreases from 15.548 (DLE=60) to 2.448 (DLE=35).

Tables 2 and 3 summarise the results of the experiments
with adaptive observations taken in the limited area domain
assimilated by AUS. We see that the degree of stabilisation
and reduction of the error with respect to the reference ex-
periments NOA, depend upon the frequency of observations.
In general the magnitude of the leading exponent as well as
the dimension of the unstable subspace and Kaplan-Yorke
attractor dimension are further and further reduced by de-
creasing the assimilation interval. Accordingly, the error ex-
hibits a progressive reduction and drops to remarkably low
levels in correspondence to the system stabilisation. There-
fore by decreasing the extension of the domain and decreas-
ing the assimilation interval, the system becomes more and
more stable and the analysis error reaches values as low as
1% of natural variability. In particular, in the experiment
with adaptive observations assimilated every 6 or 3 hrs, the
leading exponents negative and the error is quite small even
in the case of the largest domain (DLE=60).

In summary, Tables 2 and 3 reveal the following picture.
When, relative to the number and growth of the unstable
vectors that characterise a given limited area domain, the
frequency of observations is too low to capture the growing
modes, the targeting assimilation process is inefficient and
the level of error high. Let us confine our attention to the
successful experiments, defined as those where a system sta-

bilisation is obtained by AUS-BDAS and error is reduced
to less than 1% of natural variability. A non-dimensional
parameter can be constructed by multiplying the number
of positive exponents (N+) by the leading one (λmax) and
by the assimilation interval (τ ). Figure 6 shows the aver-
age error for the successful experiments as a function of this
parameter. The error level at which the system stabilises
appears to be a monotonic function of this parameter with
an approximate linear dependence. This result supports our
claim that the number (frequency) of observations needed to
stabilise the system and efficiently reduce the analysis error
depends upon the number and growth rate of the unstable
directions.

9 Conclusions

The assimilation in the unstable subspace developed by
TU, applied to a QG model in an adaptive observation con-
figuration, with observational noise, proved capable of re-
ducing the analysis errors to a remarkably low level.

The key to this success is in the mutual enhancement
of two beneficial effects obtained by:

-the strategy of observing the most unstable compo-
nents of the data-assimilation system (BDAS);

-the effective reduction of the error in the unstable sub-
space achieved by the assimilation (AUS).

This is because, when errors in the unstable directions
are efficiently reduced, the error becomes smaller and be-
haves more linearly. Therefore, the unstable directions them-
selves become more representative of the actual error, the
unstable structures take a longer time to build up and a
smaller number and lower frequency of observations becomes
sufficient to control their growth.

The estimate of the unstable directions, consistent with
the stability analysis of the data assimilation system, is ob-
tained by a modified breeding technique, BDAS, that natu-
rally incorporates the information on the observational net-
work, the assimilation system and its dynamical instabilities.

In the QG-Model experiments, the benefit obtained by
the targeting strategy based on BDAS and the assimilation
in the unstable subspace (AUS) is estimated.

The comparison with a 3DVar algorithm, extended here
to the case of noisy observations, confirms the ability of the
BDAS technique to estimate the actual unstable modes of
the assimilation system and the efficiency of the dynamically
based assimilation (AUS).

Furthermore results show that, as predicted by the the-
ory, the observational forcing reduces the dimension of the
unstable subspace and stabilises the assimilation system; in
particular, the number of observations needed to stabilise
the system is related to the instability properties of the free
system.

It remains to be seen how this method works in an
operational environment. Experience with this model and
with a primitive equation ocean model (UTC, UT) suggests
that the method has a good performance in different con-
texts, with minor details of implementation depending on
the model and the specific observational configuration. In
fact, the introduction of adaptive observations, based on the
same principles of the present work, in the complex, primi-
tive equation, large dimension ocean system, leads to a re-
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markable reductions of errors. These results suggest some
optimism with regard to the applicability of this approach
to more complex atmospheric and oceanic prediction models
and real observational networks.
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APPENDIX A: Analysis solution for M>N=1

From (3) and the appropriate expression for K when
M > N , (4b), the analysis solution takes the form:

xa = xf+E
[

Γ−1 + (HE)T R−1 (HE)
]

−1
(HE)T R−1

(

yo − Hxf
)

(A1)
Consider the case when many observations and a single

unstable direction are used, M > N = 1
The matrix E = e has just one column and the matrix

Γ = γ2 reduces to a scalar. The matrix HE is a column
vector of length M : ye = He. The analysis state is then:

xa = xf +
(ye)T R−1

(

yo − Hxf
)

γ−2 + (ye)T R−1ye
e (A2)

APPENDIX B: Estimate of γ for M>N=1

The innovation, d = yo−Hxf , and the vector ye = He
are vectors of length M . In the case M > N = 1, with
R = σ2I, the analysis (A2) is:

xa = xf +
σ−2 (ye)T

(

yo − Hxf
)

γ−2 + σ−2 (ye)T ye
e (B1)

or, equivalently:

xa = xf +
γ2 (ye)T d

σ2 + γ2 (ye)T ye
e (B2)

After multiplying and dividing by (ye)T ye and rear-
ranging we obtain:

xa = xf +
γ2 (ye)T ye

σ2 + γ2 (ye)T ye
·

(ye)T d

(ye)T ye
e (B3)

In (B3), the background error variance appears in a
form that is convenient for a direct evaluation because the
first ratio on the right hand side is a term in the form of a
weight that we want estimate.

If, as usual, observations and forecast error are assumed
to be uncorrelated we have:

〈dT d〉 ≈ 〈γ2 (ye)T ye〉 + σ
2 (B4)

where 〈〉 represents the expectation operator.
Clearly, at the beginning of the experiment we do not

have this statistics available. Furthermore, during the ex-
periment, large fluctuations of the background error occur.
In addition to the familiar flow dependence of the forecast
error, the analysis error is subject to transient behaviour
before it stabilises (see Fig. 1). Therefore, in the estimate of
γ, it is convenient to consider a time mean over the recent
past:

〈γ2 (ye)T ye〉τ ≈ 〈dT d〉τ − σ
2 (B5)

where 〈〉τ represents the average over an appropriate
time interval τ .

For finite τ there is no guarantee that the term on the
right hand side of (B5) is positive. Therefore we decided to
neglect σ2 in (B5) and let our estimate be obtained from:

〈γ2 (ye)T ye〉τ ≈ 〈dT d〉τ (B6)

In practice, in experiments type II we use:

xa = xf +
〈dT d〉τ

σ2 + 〈dT d〉τ
·

(ye)T d

(ye)T ye
e (B7)

The time average is relative to the last time interval τ

that, after tuning, has been set equal to 8 days.
We point out that this is just one, and possibly not the

best, among all viable choices.
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Experiment Ocean Observation Ocean Observation Ocean Observation RMS Error Leading
type Location Assimilation Exponent

LO - - - 0.462 0.092

FO sounding fixed (x=42, y=16) 3DVar 0.338 0.076

RO sounding random 3DVar 0.311 0.063

3DVar-BDAS sounding BDAS 3DVar 0.184 0.006

AUS-BDAS temperature BDAS AUS 0.060 -0.052

Table 1. Error statistics and stability analysis for experiment LO, FO, RO, 3DVar-BDAS and AUS-BDAS (see text for details). Errors
are expressed in potential enstrophy norm and are normalised with natural variability. Leading exponents are expressed in day−1 . The
values are relative to the last 580 days of 2-year-long runs with noisy observations.

DLE NOA AUS AUS AUS AUS
Domain Longitudinal Extension No Observation (τ=24hr) (τ=12hr) (τ=6hr) (τ=3hr)

60 .756 .742 .729 0.153 .024

55 .653 .623 .611 0.026 .020

50 .616 .542 .036 0.020 .019

45 .523 .336 .019 0.016 .016

40 .452 .026 .016 0.014 .013

35 .220 .016 .014 0.012 .012

30 .092 .010 .010 0.010 .010

Table 2. Error statistics for experiments NOA (no observations) and AUS-BDAS implemented with different assimilation interval (τ),
as a function of limited area model longitudinal extension (DLE) expressed in number of grid points. Errors are expressed in potential
enstrophy norm and are normalised with natural variability. The values are relative to the last 580 days of 2-year-long runs.

DLE NOA AUS AUS AUS AUS
Domain Longitudinal Extension No Observation (τ=24hr) (τ=12hr) (τ=6hr) (τ=3hr)

60 .160 (7; 15.5) .066 (5; 9.1) .021 (3; 5.7) -.024 -.107

55 .143 (6; 12.5) .064 (4; 7.7) .019 (1; 3.4) -.057 -.131

50 .120 (5; 9.9) .024 (2; 3.3) -.037 -.103 -.166

45 .076 (3; 6.2) -.019 -.070 -.137 -.196

40 .062 (3; 5.1) -.055 -.125 -.189 -.253

35 .051 (1; 2.4) -.100 -.172 -.242 -.331

30 -.007 -.192 -.256 -.342 -.384

Table 3. Leading exponent for experiments NOA (no observation) and AUS-BDAS implemented with different assimilation interval(τ),
as a function of limited area model longitudinal extension (DLE) expressed in number of grid points. Leading exponents are expressed
in day−1 . The first number in parenthesis indicates the unstable subspace dimension, while the second is the Kaplan-Yorke dimension.
The values are relative to the last 580 days of 2-years long runs.
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Figure 1: Normalised RMS analysis error as a function
of time. The error is expressed in the potential enstrophy
norm and it is normalised by the natural variability (RMS
difference between decorrelated states). Dashed line: exper-
iment with 3DVar-BDAS. Continuous line: experiment with
AUS-BDAS.

Figure 2: Normalised time and vertically averaged
RMS analysis error. The error is expressed in the potential
enstrophy norm and it is normalised by the natural vari-
ability. Upper panel: experiment with 3DVar-BDAS. Lower
panel: experiment with AUS-BDAS.

Figure 3: Longitudinal dependence of normalised
RMS analysis error. The error is expressed in the poten-
tial enstrophy norm and it is normalised by the natural
variability. Dashed line: experiment with 3DVar-BDAS.
Continuous line: experiment with AUS-BDAS.

Figure 4: Stability analysis. Upper panel: mean
growth rate as a function of time for 3DVar-BDAS (dashed
line; leading exponent=0.006 day−1) and for AUS-BDAS
(continuous line; leading exponent=-0.052 day−1). Middle
panel: instantaneous growth rate as a function of time
for experiment 3DVar-BDAS. Lower panel: instantaneous
growth rate as a function of time for experiment AUS-BDAS.

Figure 5: Normalised time and domain RMS forecast
error as a function of forecast range. Dashed line: experi-
ment with 3DVar-BDAS. Continuous line: experiment with
AUS-BDAS.

Figure 6: Normalised time and domain RMS error as
a function of the non-dimensional parameter N+λmaxτ (see
text for details).
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